Temperature Stratification and Altitude Ozone Variability in the Low Troposphere from Acoustic and Balloon Sounding

M. A. Lokoshchenko and D. M. Shifrin

Results of simultaneous balloon and acoustic sounding in the lower troposphere (in the surface layer up to 800 m) carried out in Velikie Luki in May–June 2002 jointly by the Moscow State University (MSU) and Central Aerological Observatory (CAO) are discussed. During the experiment, the tethered (captive) balloon for measuring air temperature and ozone partial pressure was ascended and descended 15 times. Simultaneously, gradient measurements were performed at a 4-m tower. During the intervals between ascents, the temperature stratification was determined by using the Ekho-1 sodar data. A dominating influence of temperature stratification and of some weather events on the ozone distribution with altitude is shown. In case of unstable stratification, its partial pressure is almost unchanged within the entire lower troposphere; in case of surface inversion, the ozone decrease is observed near the surface. In case of elevated inversion the ozone partial pressure is almost the same both below inversion and above it; in the layer of the inversion itself, it increases spasmodically with the altitude. Synoptic conditions largely influence the stratification regime: under conditions of the Arctic air mass, the thermal convection is observed more often and surface inversions are observed more rarely than when the local mass dominates. Artificial dynamic mixing can lead to the surface inversion dissipation in several minutes.

Joomla templates by a4joomla